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Ensembles of quantum trajectories are evolved to study time-dependent reaction dynamics in multidimen-
sional systems with up to 25 vibrational modes. The equations of motion are formulated in curvilinear reaction
path coordinates and all coupling terms are retained, including those involving curvature of the reaction path.
The model potential is a Gaussian barrier along the translational coordinate coupled to M vibrational modes.
Spatial derivatives needed to propagate the trajectories are evaluated by least squares fitting in a contracted
basis set. Stable propagation of the trajectory ensembles was carried out until complete bifurcation into
reflected and reactive subensembles. The reaction probabilities were evaluated by Monte Carlo integration of
the multidimensional smooth transmitted densities. Computational results, including trajectory plots and time-
dependent reaction probabilities, are presented for M =1, 5, and 25 vibrational modes.
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I. INTRODUCTION

Ensembles of quantum trajectories have recently been
used to study the quantum dynamics of multidimensional
systems, although, in a number of cases, two degrees of free-
dom were involved. As background for the current studies,
the earlier multidimensional work will be briefly reviewed.
In the first application of quantum trajectories to reactive
scattering, Wyatt studied the trajectory dynamics for a model
collinear reaction �1�. In this formulation, reaction path cur-
vature was included in the equations of motion for the tra-
jectories and spatial derivatives were evaluated by a least
squares method. Using a Delaunay tessellation method for
function fitting and derivative evaluation, Nerukh and Fred-
erick �2� propagated quantum trajectories in two and three
dimensions. Instructive plots showed bifurcation of the prob-
ability density during the scattering process. In addition,
Rabitz and co-workers �3,4� used ensembles of quantum tra-
jectories to propagate wave packets for two-dimensional
models representing the photodissociation of NOCl and
NO2. Quantum trajectories were used by Wyatt to study elec-
tronic nonadiabatic effects for two coupled 11 degrees of
freedom potential energy surfaces �5�, and Na and Wyatt
studied the decay of a metastable state in models with up to
15 degrees of freedom �6�. Recently, Kendrick reported time-
dependent reaction probabilities for an M-dimensional reac-
tive scattering model �7� which included reaction path cur-
vature. This approach used an arbitrary Lagrangian-Eulerian
�ALE� moving frame along with a regridding algorithm to
create or annihilate trajectories as needed in order to main-
tain uniform spacing. In order to counter the growth of com-
putational effort with increasing values of M, a decoupling
approximation was introduced in order to decompose the
problem into a set of one-dimensional problems. Computa-
tional results were reported for values of M through 100.

In addition, Pauler and Kendrick �8� propagated en-
sembles of quantum trajectories for a two-dimensional reac-

tive scattering model �with neglect of reaction path curva-
ture�. In order to circumvent problems arising from node
formation, artificial viscosity terms were added to the equa-
tions of motion. In a study of scattering from a barrier in a
two-dimensional model �9�, Babyuk and Wyatt applied the
covering function method �10� to deal with the node prob-
lem. With this method, it was possible to evolve trajectory
ensembles for long times, even for wave packets which were
vibrationally excited in the initial state. Starting from an ini-
tial nonstationary state represented by quantum trajectories,
Maddox and Bittner �11� propagated quantum trajectories in
order to compute the ground state for the bend-stretch vibra-
tional modes of CH3I.

By modeling the nonclassical component of the momen-
tum operator, Garashchuk and Rassolov developed an ap-
proximate quantum potential �12–14� �AQP�. This method
was used to compute energy-resolved reaction probabilities
for the collinear H+H2 reaction and photodissociation spec-
tra for a two-dimensional model of ICN. Using an AQP,
Rassolov et al. computed reaction probabilities for the
O�3P�+H2 �and HD� reactions in three-dimensional space in
the absence of rotational motion �15�. Excellent quantum tra-
jectory results were obtained in comparison with those com-
puted using conventional propagation techniques.

The main obstacle to straightforward propagation of
quantum trajectory ensembles is the node problem �16�. In
regions where nodes form in the wave function, the quantum
potential may become singular and this makes accurate tra-
jectory propagation difficult. Fortunately, several methods
have been developed to resolve this issue �16�. In scattering
problems involving barrier transmission, node formation
usually occurs in the incident channel during the time inter-
val that the wave packet is undergoing bifurcation. In the
current study, we will not apply any of the methods for han-
dling the node problem because the focus is upon transmis-
sion of probability density to the product channel. Even
though we will not obtain accurate reflected wave packets,
the transmitted packet, which is smooth, can be accurately
computed. In addition, if the barrier is relatively low, then
nodes forming in the reflected packet do not significantly
disturb the transmitted portion of the packet.*Corresponding author. Email address: wyattre@mail.utexas.edu
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The purpose of the present study is to develop and apply
an algorithm for propagation of ensembles of quantum tra-
jectories undergoing reactive scattering in multidimensional
systems. �However, since rotational and angular momentum
effects have not been incorporated, the present formulation
may be most appropriate for condensed phase reactive pro-
cesses.� The equations of motion are developed in curvilinear
reaction path coordinates �RPC� and all coupling terms are
retained in the equations of motion, including those involv-
ing reaction path curvature. For the case where only one
vibrational mode is coupled to motion along the reaction
coordinate, the trajectory results will be compared with those
obtained by directly integrating the time-dependent
Schrödinger equation on a large spatial grid. In addition,
computational results will be presented for scattering prob-
lems in which the number of vibrational modes is much
larger �up to 25�.

Because reaction path coordinates blend smoothly from
the reactant region through the collision complex into the
product region, they have been used in a number of statistical
and dynamical studies of reaction dynamics. Arguably, these
coordinates provide the best framework for performing dy-
namical analysis, such as studies of energy transfer, in the
collision complex. However, a major disadvantage of this
approach arises from the complexity of the kinetic energy
operator. For this reason, it is also important to explore the
propagation of trajectory ensembles in other coordinate sys-
tems, such as Cartesian and Jacobi. In this regard, it is sig-
nificant that the quantum trajectory studies mentioned earlier
for the O�3P�+H2 reaction �15� were performed in Jacobi
coordiates.

The organization of the remainder of this paper is as fol-
lows: In Sec. II, the reaction path Hamiltonian is constructed
and Lagrangian trajectory equations of motion are derived.
The model potential energy surface, generation of initial con-
ditions for the trajectories, implementation of a least squares
routine for spatial derivative evaluation and function interpo-
lation, and Monte Carlo integration of the multidimensional
probability density are also described in Sec. II. In Sec. III,
results are presented for wave packet evolution in systems
for which the number of vibrational modes varies from 1
through 25. Finally, a brief summary is presented in Sec. IV.

II. REACTIVE SCATTERING
WITH QUANTUM TRAJECTORIES

A. Reaction path coordinates and kinetic energy

The Hamiltonian and equations of motion for the hydro-
dynamic fields will be formulated in orthogonal curvilinear
RPC. The approach used here differs in some aspects from
the natural collision coordinate formulation of Marcus �17�
and from the later reaction path Hamiltonian �RPH� devel-
oped by Miller, Handy, and Adams �18�. Starting in Jacobi
coordinates for the reactants, we construct a reference curve
�RC� which leads from the reactant region through the colli-
sion complex and into the product region. In this study, it
will be assumed that the RC is planar. The arc length mea-
sured along this curve �s� is negative in reactants and posi-
tive in products. The origin for s is arbitrary, but in this study

will be chosen at the position of the barrier maximum in the
collision complex. The RC follows the minimum potential
energy in the asymptotic reactant and product channels, but
does not necessarily pass through the saddle point �if there
is one� in the collision complex. In general, the RC and
the steepest descent path leading away from the saddle

point may be displaced from each other by the vector d��s�.
However, in this study, this displacement will be assumed to
vanish.

The RC is characterized by the curvature ��s�, which van-
ishes at large distances from the collision complex. We will
assume that the curvature has a Gaussian form

��s� = A exp�− �s2� =
d�

ds
, �2.1�

where ��s� is the angle �measured clockwise� between tan-
gents to the RC at points s and the asymptotic reactant region
�in this study, ��0�=� /3�. The reciprocal of the curvature
defines the turning radius, R�s�=1/��s�, and this quantity is
used to specify one of the constants in the equation for the
curvature: A=1/R�0�. In order to specify the RC in Cartesian
coordinates, the turning center �xtc ,ytc� and the skew angle �
are needed in addition to R�0� �see Fig. 1�. It is then straight-
forward to derive the Cartesian coordinates of the saddle
point �x0 ,y0� �see Table I�. Starting from this point and tak-
ing into account that

dx = − ds cos���s�� , �2.2�

dy = ds sin���s�� , �2.3�

the RC is constructed by integration of Eqs. �2.1�–�2.3�,

��s� =
1

2R�0�
��

�
erf���s� + K , �2.4�

FIG. 1. RC plotted in Cartesian coordinates �measured in a.u.�.
Parameter values are given in Table I. The geometric quantities are
defined in Sec. II A.
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xs�s� = x0 − �
0

s

cos ��s��ds�, �2.5�

ys�s� = y0 + �
0

s

sin ��s��ds�. �2.6�

The integrals in Eqs. �2.5� and �2.6� are computed numeri-
cally. The angle K between the RC tangents at the position
s=0 and the asymptotic reactant region �s→−�� is related to
� by K= 1

2 ��−��. From another viewpoint, angle K can also
be found from Eq. �2.4�

K = ��0� − ��− �� =
1

2R�0�
��

�
. �2.7�

As a result, parameter � in Eq. �2.1� is determined by R�0�
and �,

� =
�

R�0�2�� − ��2 . �2.8�

This relationship guarantees that the RC is a straight line in
the asymptotic regions.

Turning to the vibrational degrees of freedom, the vibra-
tional coordinate in the plane specified by the RC is denoted
�1 �this is the perpendicular distance from a point to the RC
and it is chosen to be positive on the concave side of the
RC�. The relations between the curvilinear and Cartesian co-
ordinates for any arbitrary point are

x�s,�1� = xs�s� + �1 sin���s�� , �2.9�

y�s,�1� = ys�s� + �1 cos���s�� . �2.10�

The RC for the particular set of parameters and correspon-
dence between the curvilinear �s ,�1� and Cartesian �x ,y� co-

ordinates for an arbitrary point B is demonstrated in Fig. 1
and Table I.

In the kinetic energy operator, the two “planar coordi-
nates” �s ,�1� are coupled by curvature terms. For a system
with M vibrational modes, at each value for s, the remaining
�M −1� vibrational coordinates span a hyper-space orthogo-
nal to the RC. The M vibrational displacements from the RC
are denoted by �i �i=1,2 , . . .M�. As we progress along the
RC, the vibrational hyper-space “swings around” the RC,
always remaining orthogonal to it.

In terms of RPC, the kinetic energy operator K̂ is given by

−
	2

2

�2 = −

	2

2

��−1�s��−1�s� + �−1��1

����1
� + �

j=2

M

��j�j	 ,

�2.11�

in which we use the notation �s=� /�s, 
 is the reduced mass,
and where �=1−��s��1. In this equation, the two planar co-
ordinates �s ,�1� are coupled by the curvature term �, but the
remaining �M −1� vibrational coordinates � j �2� j�M� are
not coupled by curvature terms to the two planar coordinates.
�If the RC becomes nonplanar, there are additional curvature/
torsional coupling terms between s and the vibrational coor-
dinates.�

The kinetic energy operator in Eq. �2.11� does not have
the form used in the RPH derived by Miller et al. �18�. In
that study, local normal vibrational coordinates were intro-
duced and these twist around the RC during the progression
from reactants to products. As a result, complicated dynami-
cal coupling terms appear in their kinetic energy operator. In
our case, an invariant orientation is used for the vibrational
coordinates throughout the reaction space and vibration-
vibration coupling is thus transferred to the potential energy

TABLE I. Parameters for the reference curve in Fig. 1 �all units are atomic�.

R�0� = 3.5, � =
�

3 sB=−4.5, �1B=1.75

K =
1

2
�� − �� =

�

3
xs�sB� = x0 −�

0

sB

cos �s��ds� = 10.29

� =
�

R�0�2�� − ��2 = 0.058 ys�sB� = y0 +�
0

sB

sin �s��ds� = 1.65

ytc = 5.50, xc =
ytc

tan��/2�
= 9.53 x�sB ,�1B�=xs�sB�+�1B sin��sB��=10.52

x0=xtc−R�0� cos�� /2�=6.50
y�sB ,�1B�=ys�sB�+�1B cos��sB��=3.59

y0=ytc−R�0�sin�� /2�=3.75
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term in the Hamiltonian �i.e., local normal modes are not
introduced�.

B. Model potential energy surface

The model potential energy surface used for this study is
constructed from a Gaussian barrier in the translational co-
ordinate coupled to a harmonic bath with M vibrational
modes

U�s,�1,�2, . . . �M� = V0 exp�− as2� +
1

2�
i=1

M

ki�s��i
2.

�2.12�

Coupling between the translational and vibrational coordi-
nates is introduced via the s-dependent force constants k�s�,
defined by

ki�s� = k0i�1 − �̄ exp�− bs2�� . �2.13�

The coupling parameter �̄ in this equation must be rescaled
due to the complexity of the potential for high dimensional-
ity. For example, if a=b, then upon substituting Eq. �2.13�
into Eq. �2.12�, the potential energy can be rewritten as

U�s,�1,�2, . . . �M� = exp�− as2��V0 −
�̄

2 �
i=1

M

ki0�i
2	

+
1

2�
i=1

M

ki0�i
2. �2.14�

When �i�0, the second term within the square brackets is
subtracted from V0, thus lowering the effective barrier. This
effect becomes more significant as the number of vibrational
modes grows due to the summation in the second term
within the brackets. Moreover, it can even happen that the
second term in the brackets exceeds V0. As a result, a basin
forms instead of a barrier along the translational coordinate
at fixed �i. In this case, the dynamics will be very complex.
In order to avoid formation of the potential well in regions
accessible to parts of the wave packet, the coupling param-
eter �̄ should be chosen appropriately. One way is to divide
it by M, thus compensating growth of the sum within the
brackets in Eq. �2.14� as the dimensionality increases. Based
upon this consideration, our final model potential energy is
defined as

U�s,�1,�2, . . . �M� = V0 exp�− as2�

+
1

2�
i=1

M

ki0�1 − ��/M�exp�− bs2���i
2.

�2.15�

The parameters used in this study are as follows:
a=1.5 a.u., �=0.1 a.u., b=1.5 a.u., V0=1000, 2000, and
3000 cm−1. The force constants k0i are uniform random num-
bers in the interval kmin�k0i�kmax, where kmin=0.7kmax, and
kmax is chosen to make a one-dimensional harmonic potential
equal to 10 000 cm−1 when �i=1 a.u.

C. Lagrangian equations of motion

Now that the kinetic and potential energy operators have
been expressed in reaction path coordinates, equations of
motion for the hydrodynamic fields can be derived. This
derivation is initiated by substituting the polar form for the
wave function, �=exp�C+ iS /	�, into the time-dependent
Schrödinger equation. In the polar form, the amplitude C and
the action function S are both real valued. After some sim-
plification, we obtain equations of motion for the two fields

dC

dt
= −

1

2

�Sss

�2 −
�

�
S�1

+
�s

�3�1Ss + �
j=1

M

S�j�j	 , �2.16�

dS

dt
=

1

2

� Ss

2

�2 + �
j=1

M

S�j

2 	 − �U + Q� , �2.17�

where subscript notation has been used for partial deriva-
tives, Cs=�C /�s, Css=�2C /�s2, etc. The curvature or its de-
rivative explicitly enters several terms in these two equa-
tions. The right side of Eq. �2.17� constitutes the quantum
Lagrangian, the excess of the local kinetic energy over the
total potential energy �the sum of U and Q�. In terms of
RPCs, the quantum potential in Eq. �2.17� is given by

Q = −
	2

2

� 1

�2 �Css + Cs
2� +

�s

�3�1Cs

+ �
j=1

M

�C�j�j
+ C�j

2 � −
�

�
C�1	 . �2.18�

We note that the reaction path curvature enters into several
terms in the quantum potential.

Equations �2.16� and �2.17� have been expressed in the
Lagrangian frame, in which each grid point moves at the
local flow velocity of the probability fluid, and the resulting
dynamics is then expressed in terms of Bohmian trajectories.
Quantum dynamics in more general arbitrary Lagrangian-
Eulerian frames is described elsewhere �16�.

D. Initial conditions

The initial wave function is assumed to be the product of
a normalized Gaussian wave packet for the translational mo-
tion multiplied by a plane wave and M one-dimensional
ground state harmonic oscillator functions for the vibrational
motion

��s,�1,�2 . . . �M� =�4 2�s

�
exp�iks�exp�− �s�s − s0�2�

�

i=1

M �4 2��i

�
exp�− ��i�i

2� . �2.19�

The probability density is then discretized into an ensemble
of N particles. These grid points form an irregular structure
in �M +1�-dimensional space, with the points scattered
around the point of maximum probability density. It is desir-
able that each particle carry a probability density which lies
above a minimum threshold value.
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In order to define the initial coordinates for these quantum
trajectories, each particle’s coordinate was randomly gener-
ated according to the normal distribution with mean values
�s�=s0, ��i�=0, and optimized standard deviations. If the
standard deviations are too low, then the particles cluster
around the maximum point and sample only part of the prob-
ability density. At the other extreme, values of the standard
deviations which are too large make the particles spread into
regions of very low probability density where they are use-
less. The optimal standard deviations are inversely related to
square roots of the width parameters ��� in Eq. �2.19�. Even
at optimized standard deviations, a few generated particles
fall into regions of low probability density and they are
dropped from the ensemble.

E. Determination of derivatives through least squares fitting

From information carried at the scattered trajectory loca-
tions �namely, the functions C and S�, it is necessary to com-
pute spatial derivatives of the hydrodynamic fields in order
to integrate Eqs. �2.16� and �2.17�. Least squares fitting pro-
vides a method for doing this �16�. Within a stencil of np
nearest points encompassing the point of interest, the func-
tion is expanded in a local basis set pj�r��� comprising nb

terms, with np�nb. At each point in the stencil, we would
like approximant f�r�� to satisfy the equations

f�r�i� = �
j=1

nb

pj�r�i�aj, i = 1,2, . . . np, �2.20�

in which the coefficients aj� are to be determined. Since
there are typically many more of these equations than un-
knowns, the system is said to be overdetermined. Once the
fitting coefficients have been computed, the spatial deriva-
tives are determined from the derivatives of the basis func-
tions. For example, the first derivative with respect to coor-
dinate qk is given by

�f

�qk
= �

j=1

nb �pj

�qk
aj . �2.21�

In matrix notation, Eq. �2.20� becomes

Pa = f , �2.22�

where the rectangular matrix P �dimension np�nb� has ele-
ments Pi,j = pj�r�i�. The other two matrices are column vectors
with nb or np rows for a or f , respectively.

The usual way to solve these equations is to weight each
equation, form the normal equations, PtwPa= Ptwf , and then
find the inverse of the PtwP matrix

a = �PtwP�−1�Ptwf� , �2.23�

where Pt denotes the transpose �19,20�. The diagonal weight
matrix is frequently chosen to have Gaussian elements

wi,i = exp�− �ri
2� . �2.24�

The inverse matrix in Eq. �2.23� can be computed by LU
decomposition followed by back substitution. In addition,
since the PtwP matrix is symmetric and positive definite, it

can be factored by Cholesky decomposition, thus spending
less computational time than LU decomposition �21�. Al-
though this approach sometimes works very well, the method
breaks down when the columns or rows of PtwP approach
linear dependence. When there is near linear dependence, the
condition number of PtwP becomes very large and the re-
sulting solution vector a may not be accurate.

Instead of proceeding through the normal equations, we
will “directly” solve the weighted matrix equation �2.22� for
the solution vector

a = �wP�+wf , �2.25�

where �wP�+ is the Moore-Penrose generalized inverse of the
rectangular matrix. There are several ways to determine
�wP�+ �19,20�. The first involves orthogonalization of the
columns of wP via the QR transform: wP=QR �the orthogo-
nal matrix Q has dimensions np�nb and the upper triangular
matrix R has dimensions nb�nb�. In terms of these two
matrices, the pseudoinverse is given by �wP�+=R−1Qt. A sec-
ond method for determination of the pseudoinverse involves
the singular value decomposition �SVD� of the matrix wP:
wP=UDVt �the dimensions of U, D, and V are np�nb,
nb�nb, and nb�nb, respectively�. In this factorization, the
diagonal matrix D stores the “singular values” while U and V
are orthogonal matrices. In terms of these matrices, the
pseudoinverse is given by �wP�+=VD−1Ut.

Formation of the pseudoinverse through either of these
factorizations provides an effective means of solving the
least squares equations. We have used both of these methods
in the applications of quantum trajectory methods to reaction
dynamics. Specific values for np and nb will be mentioned in
Sec. III.

In order to form the stencil for a particular particle, dis-
tances between this particle and all others must be found and
then sorted by increasing value. This process may be time
consuming since �N−1�-dimensional vectors for N particles
must be sorted. However, there is no need to do this at every
time step. Quantum trajectories do not suddenly change their
relative positions in the ensemble during evolution. There-
fore, resorting is only performed periodically �every 50–100
atomic time units�. This procedure significantly reduces the
computational time.

Concerning the choice of basis set in Eq. �2.20�, it is
desirable to include as many functions as possible. However,
it is also important to restrict nb to keep the computer time as
small as possible. For this reason, we limit the complexity of
the basis sets by eliminating some terms that would occur in
the direct product of terms from the separate coordinates.
Consider M =2, for example, and let x ,y1 ,y2� denote trans-
lational and vibrational displacements from the reference
point. The basis set that we use, denoted B, is complete
through linear and diagonal quadratic terms, but restricted in
the number of off-diagonal quadratic and cubic terms

B = 1,x,y1,y2,x2,y1
2,y2

2,xy1,x3,x2y1,xy1
2� . �2.26�

In this basis, higher-order terms in x and y1 are included
because these modes are expected to be strongly coupled by
curvature terms in the Hamiltonian. For the general case with
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M vibrational modes, the dimension of this basis set is given
by d=2M +7 and the size only grows linearly with M. Even
for 100 modes, the dimension of the basis is manageable,
d=207. For low values of M��25�, inclusion of additional
quadratic and cubic terms in the basis set was found to pro-
duce only minor changes in the trajectory dynamics.

F. Monte Carlo computation of reaction probabilities

One goal of these quantum trajectory calculations in-
volves the computation of reaction probabilities. Integration
of the probability density needs to be carried out over the
region of this space where the scattered data is distributed.
Since the initial trajectories were generated at random ac-
cording to the normal distribution, each trajectory carries the
same weight, w=1/N. Then the reaction probability is sim-
ply the ratio of the number of transmitted trajectories to the
total number of trajectories �15�. However, the total number
of trajectories should be relatively large �at least several
thousand� in order to give accurate reaction probabilities.

In this study, an alternate Monte Carlo technique was de-
veloped for computing the transmission probabilities, even
when the number of trajectories is small. The integration
region is sampled by random Monte Carlo points and the
probability density at each of these points is computed from
information carried by the scattered trajectories. �Trajectories
exterior to the integration region are ignored.� If the Monte
Carlo points are sampled using a normalized probability den-
sity p, then according to the basic Monte Carlo theorem, the
integral of any function f is estimated by �22�

� fdV �� f

p
� ± Err, �2.27�

where Err is the standard deviation error estimate for the
integral and is given by

Err =��f2/p2� − �f/p�2

Nmc
, �2.28�

where Nmc is the number of sample points. The efficiency of
Eq. �2.27� depends mainly on the choice of the sampling
density p. In our case, the best choice for p is the multivari-
ate normal distribution. The region of scattered data should
be sampled in such a way that only a small portion of the
sample points fall beyond the region encompassed by the
data. This match can be achieved by varying the mean and
standard deviation values for the normal density p. During
computation of the reaction probability, only sample points
with s�sb are included, where sb is the left boundary of the
transmitted subensemble.

The probability density at a sample point is computed via
interpolation from the scattered data. The method used here
is the same least squares fitting procedure that was used for
derivative evaluation. This method is easily adapted for func-
tion evaluation at any arbitrary point. Similar to the method
described earlier, one creates a stencil for the Monte Carlo
sample point with np nearest quantum trajectories and then
finds the least squares coefficients. Of course, this approach
is relatively time consuming since the stencil must be formed

for each Monte Carlo sample point. Accuracy of the Monte
Carlo integration is controlled by the value of Err in Eq.
�2.28�. When Nmc=104 and optimal mean and standard de-
viation values are used for p �see Eq. �2.27��, the error falls
in the range Err=0.007–0.010. If higher accuracy is needed,
Nmc should be raised. For the computations reported in Sec.
III for some unfavorable cases, the highest number of Monte
Carlo points was Nmc=105.

III. COMPUTATIONAL RESULTS

We will first consider the reactive scattering problem
where only one vibrational mode is coupled to translational
motion along the RC. This two dimensional �2D� problem
serves as a training ground for developing, testing, and
tuning the computational methodology. Knowledge
acquired during the study of this example will then be ap-
plied in Sec. III B to scattering problems with much higher
dimensionality.

A. One vibrational mode „M=1…

For M =1, stable propagation for times sufficient for bi-
furcation of the trajectory ensemble is obtained when the
total number of trajectories exceeds 200. However, we used
N=500 in these calculations in order to enhance the quality
of the plots. An issue is how many trajectories are required in
the stencil used for least squares fitting. Expansion of the
stencil makes the propagation more stable but this requires
additional computation time to compute the least squares ex-
pansion coefficients. As a result, accuracy and computational
time must be compromised, especially for high dimensional
problems. Through a number of trials, it was found that the
minimum stencil size needed for stable propagation is related
to the total number of trajectories through the relation
np=N /4. Similarly, comparing the quantum trajectory results
with those derived via direct integration of the time-
dependent Schroödinger equation, the best values for the pa-
rameter � in the weight function in Eq. �2.24� were found to
lie in the range ��0.50−0.75 a.u.

The initial wave packet in Eq. �2.19� was centered
at s0=−3 a.u. with width parameters �s=6.0 a.u. and
��1=6.75 a.u. Then, as described above, this packet was dis-
cretized into an ensemble of quantum particles by random
generation of coordinates according to the normal distribu-
tion �with the standard deviation �=0.35�. The translational
energy was set to E=3000 cm−1 and the ensemble was
launched toward the barrier. The system of Eqs. �2.16� and
�2.17� �with the reduced mass 
=2000 a.u. and force con-
stant k01=0.0911 a.u.� were integrated with the first-order
Euler explicit time propagator �the time step �t=4 a.u. was
used�. The curvature parameters in Eq. �2.1� were set to the
values R�0�=4.5 and �=0.01.

When the ensemble reaches the curved region of the re-
action path near s=0, it starts asymmetric bouncing from the
walls of the vibrational valley. The ensemble develops a
“snaking” motion, shown in Fig. 2, which Marcus referred
to as the bobsled effect �17�. The leading edge of the en-
semble enters into the region of high vibrational energy at
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t=600 a.u. while the remainder of the ensemble is concen-
trated around the minimum of the potential. Then, the center
of the ensemble follows along the path formed by the leading
edge. The latter is pushed back toward lower energies
at t=1000 a.u. This process is repeated and again at
t=1400 a.u. the leading edge penetrates into the high vibra-
tional energy region after “rolling down” the product side of
the potential energy barrier. Snaking continues at later times
as the transmitted packet moves further into the product val-
ley. Snaking may cause some problems for trajectory propa-
gation when the curvature is large since the edge particles are
sensitive to sudden changes in motion and this may cause
them to deviate significantly from the RC. Of course, distant
particles located far from the RC carry a very low density

and decrease the stability of the propagation. Therefore,
these outlying trajectories were eliminated from the en-
semble. The criterion is that if ��1��1.2 a.u., this trajectory
is removed from the ensemble.

Figure 3 shows a comparison between the quantum tra-
jectory results and the “exact” probability density obtained
by direct integration of the time-dependent Schroödinger
equation on a large space fixed grid. For plotting purposes,
the RC has been “stretched out,” so that s and �1 appear as
rectilinear coordinates. As can be seen, at t=1400 a.u., be-
fore nodes form in the reflected region, the entire ensemble
of quantum particles is in good agreement with the exact
result. At a later time, t=2400 a.u., the transmitted part re-
mains accurate while the reflected packet has lost accuracy

FIG. 2. Snapshots of quantum trajectories in Cartesian coordinates for one vibrational mode �barrier height V0=1000 cm−1� at six time
steps �in a.u.�: �a� t=600, �b� t=1000, �c� t=1400, �d� t=1800, �e� t=2600, and �f� t=3000. Contours of the potential energy are also shown.
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due to multiple node formation. In spite of this, the transmis-
sion probabilities can be computed accurately. Using the
Monte Carlo technique described in Sec. II F, the probability
density was integrated over the region occupied by the trans-
mitted subensemble to yield transmission probabilities.
These time-dependent probabilities, shown in Fig. 4 for three
barrier heights, are in good agreement with the exact results.
This example is a good test for Monte Carlo integration since
its results can be compared with those derived by accurate
integration methods which are appropriate for regular grids.

B. Multiple vibrational modes (M=5 and 25)

The algorithm used to study reactive scattering for a sys-
tem with one vibrational mode can be readily extended to a
much larger number of modes. When setting up initial con-
ditions on the trajectories, it is not necessary to cover each
coordinate direction with a large number of grid points. In
this unfavorable case, the total number of points would scale

roughly as �N�M+1, where �N� is average number of points
along each coordinate. However for an irregular mesh, the
scaling of computational effort is defined solely by the basis
set, which is chosen to scale linearly with the number of
modes. This feature is a significant advantage of using an
irregular mesh in the study of multidimensional problems. In
order to estimate the minimal number of trajectories needed
for stable propagation for this particular model, the stencil
size np needs to be multiplied by 4 since np=N /4, as men-
tioned previously. In addition, we have the least squares re-
quirement, np�nb, and normally np should exceed nb by
about a factor of three in order to stabilize the propagation.
Taking into account that nb=2M +7, the required number
of trajectories for M vibrational modes is estimated to be
N�12�2M +7�. For example, the highest number of vibra-
tional modes for which stable propagation can be run with
500 particles is 17.

Computations were performed for M =5 with N=500 and
M =25 with N=1000. If the parameters are set to the optimal
values as described above for the M =1 case, then the time
propagation is stable. The computational results demonstrate
many features in common with the M =1 case. Projection of
the trajectories into the �s ,�1� plane again reveals snaking
since this vibrational motion is coupled with translational
motion by curvature terms. However, projections onto other
subspaces where the coordinates are coupled only via
translation-vibration terms in the potential energy shows that
the trajectories oscillate symmetrically along the vibrational
coordinates.

After a sufficient period of time, the trajectory ensemble
bifurcates along the translational coordinate. Projection of
the trajectories into the three-dimensional �s ,�1 ,�2� subspace
is shown in Fig. 5 for M =5 and V0=2000 cm−1. The size of
each ball in this figure is proportional to the value of the C
amplitude. Since this ensemble is a projection from six di-

FIG. 3. Probability densities derived from grid integration of the
time-dependent Schroödinger equation �surface map� and quantum
trajectories �points� �barrier height V0=2000 cm−1� at two time
steps: �a� t=1400 and �b� t=2400. The coordinates and time are
given in a.u.

FIG. 4. Comparison of time-dependent reaction probabilities
from direct integration of the Schrodinger equation �curves� with
those from quantum trajectory calculations �points� for M =1 at
three barrier heights �in cm−1�: �a� V0=1000, �b� V0=2000, and �c�
V0=3000.
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mensional �6D� onto a three dimensional �3D� subspace,
some edge trajectories carry large density while some inte-
rior ones have a small density. Careful examination of Fig.
5�a� reveals that snaking can be seen at t=1200 a.u. The
leading edge is stretched toward the region of negative val-
ues of �1. The mean value of �1 �for the entire ensemble� at
this time is ��1�=−0.1 a.u. At the later time shown in Fig.
5�b� �t=2400 a.u.�, complete bifurcation is observed along
the translational coordinate. Most of the reflected trajectories
carry large density values. The transmitted part is smooth
and the trajectories are distributed close to the normal distri-
bution along each coordinate. The mean values for the coor-
dinates for the transmitted sub-ensemble are: �s�=5.82 a.u.,
��1�=−0.14 a.u., �� j��0 a.u. for j=2–5. This set of mean
values was used for the p density in Monte Carlo integration.

This calculation required 7.4 min of CPU time on a
2.4 GHz Pentium-4 to propagate the ensemble. The least
squares routine itself takes 82% of this time and stencil sort-
ing requires 12%. Notice that the latter routine was called
only 30 times since new stencil organization occurs at inter-
vals of 20 time steps. Matrix inversion of PtwP �see Eq.

�2.23�� is not the slowest step for this computation since its
size is only 17�17. The slowest process is P-matrix organi-
zation �size 125�17� with its following multiplication by
the diagonal weight-matrix w �size 125�125� and the trans-
pose Pt �size 17�125�. The total computational time grows
almost linearly with the number of vibrational modes if the
total number of trajectories is fixed.

Monte Carlo integration takes 3% and 24% of the total
computational time if the number of Monte Carlo points is
Nmc=104 and Nmc=105, respectively. However, for lower
values of M, the relative time of Monte Carlo integration
grows because propagation requires less of the computa-
tional time. For example, for M =5 the percentage of Monte
Carlo integration is 10% and 51% when Nmc=104 and Nmc
=105, respectively.

The time-dependent reaction probabilities for M =25
are shown in Fig. 6 for three barrier heights �in cm−1�:
V0=1000, 2000, and 3000. For the two larger barriers, these
probabilities grow smoothly with time and then reach con-
stant values after t=2000 a.u. For the lowest barrier case, the
probability is still growing at this time because the packet
has not completely bifurcated. Further propagation brings the
transmission probability to a constant value as well. As can
be seen, the points in this plot do not precisely lie along
imaginary interpolated curves. As for one vibrational mode,
these small deviations are the result of node formation in the
reflected region. The nodal region in the reflected packet may
affect the transmitted part �especially at high barrier heights�
via trajectories that lie on the “back edge” of the transmitted
packet. The interpolated density around the barrier region
has some “kinks” and as a result, Monte Carlo integration
gives slightly overestimated values of the transmission prob-
abilities. Upon removal of a small number of these kinky
edge particles from the transmitted packet, the transmission
probabilities become constant after bifurcation, as they are
supposed to be.

FIG. 5. Projection of quantum trajectories into the three dimen-
sional �s ,�1 ,�2� subspace for M =5 at two time steps: �a� t=1200
and �b� t=2400. The barrier height is V0=2000 cm−1. The coordi-
nates and time are given in a.u.

FIG. 6. Time-dependent reaction probabilities for M =25 at
three barrier heights �in cm−1�: �a� V0=1000, �b� V0=2000, and �c�
V0=3000.
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IV. SUMMARY

In this study, it was demonstrated that the quantum reac-
tion dynamics of multidimensional quantum systems can be
successfully described by propagating ensembles of quantum
trajectories. The computational methodology was developed
and applied to model reactive scattering systems in which the
total dimensionality ranged from 2 to 26. The computational
time scaled almost linearly with the number of vibrational
modes. The longest computation, for M =25 with N=1000
trajectories, nb=250 stencil size, and 600 time steps, required
118 min of CPU �on the same computer mentioned earlier�.
The most time consuming routine involved derivative evalu-
ation by the least squares method. This procedure involves
matrix inversion and �for large M� the computational effort
scales as �2M +7�3. As a result, its percentage of the total
computational time is expected to grow significantly for
higher dimensionality. One way to reduce the computational
effort is to use least squares fitting coefficients derived for a

fiducial trajectory for a set of nearby trajectories within the
same stencil. This approximation has been tested and appears
to be useful for studying systems with more than 25 vibra-
tional modes.

Although in the current study we dealt with reactive scat-
tering problems involving up to 26 degrees of freedom, this
value is not an upper limit for the algorithm. In principle, the
procedures described here can be applied to systems with
much higher dimensionalities. Results for larger model reac-
tive systems, those with several hundred degrees of freedom,
will be reported in future publications �23�. Quantum trajec-
tory studies using accurate potential energy surfaces are fea-
sible, as demonstrated recently for O�3P�+H2 reactive scat-
tering �15�.
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